COMPUTATIONAL INTELLIGENCE

September 2013 – November 2013 Siegfried Nijssen

Leiden Institute of Advanced Computer Science
e-mail: s.nijssen@liacs.leidenuniv.nl
Katholieke Universiteit Leuven
e-mail: siegfried.nijssen@cs.kuleuven.be
http://www.liacs.nl/home/snijssen/CI/

Artificial Intelligence

- Aims to develop intelligent agents that perceive their environment and take actions that maximize their chances of success
- Requires solving several challenges:
 - Knowledge representation: how does an agent represent its knowledge and perceptions?
 - Reasoning, planning: how does an agent deduce an action based on its perceptions and its knowledge?
 - Learning: how does an agent update its knowledge based on its perceptions?

Artificial Intelligence

Planning

Actions

Perceptions

Knowledge

Perceptions

Learning

Computational Intelligence

- Computational intelligence traditionally studies a subset of three AI techniques:
 - Knowledge representation: fuzzy logic & fuzzy set theory
 - Reasoning, planning: Evolutionary (genetic) algorithms
 - Learning: Neural networks

Knowledge representation: Fuzzy logic

- Goal: represent "fuzzy" knowledge of an agent
- Traditional logic can be used to represent crisp rules:

if *A* is true then do *B*

Boolean in → Boolean out

• Fuzzy logic represents fuzzy rules:

if A is true to a high degree / A is likely then try to make B true to a high degree / make B likely

Number in → Number out

Fuzzy logic is less sensitive to errors / noise

Knowledge representation: Fuzzy logic

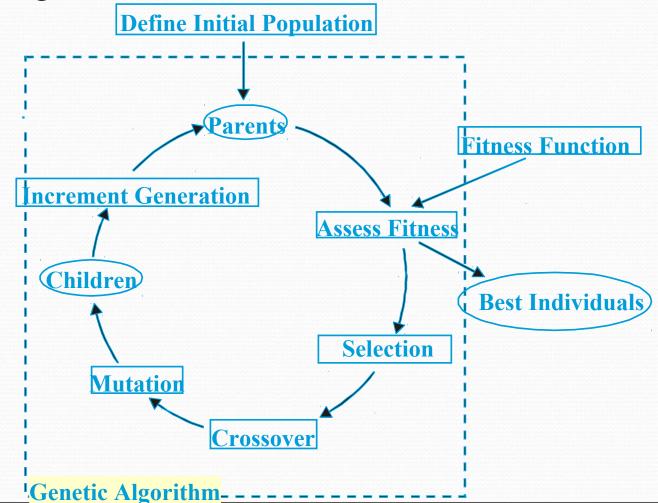
Used to build control systems

if A is warm to a high degree then B should be turned down to a high degree

Used to calculate the overall quality (fitness) of a (hypothetical) situation

if A is likely then outcome is likely good if B is likely then outcome is likely good if C is likely and B is not likely then outcome is likely good

how good would the situation be in which *A* and *C* are true, and *B* is false?


• Research challenges: how to interpret fuzzy rules? What are sensible strategies for calculating an output, given inputs? How to make the intuition formal?

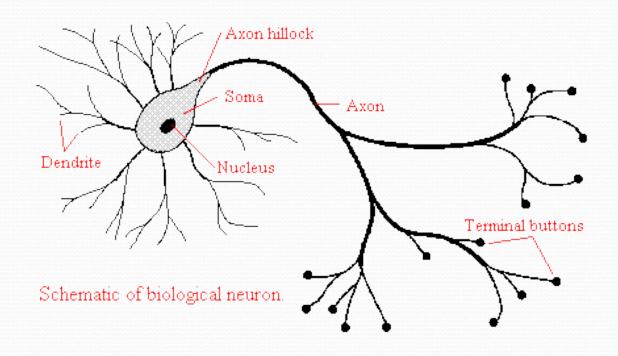
Planning / optimization: Evolutionary Algorithms

- Goal of an evolutionary algorithm: to find a plan that optimizes a given fitness function
 - the fitness could be defined by means of fuzzy logic, but does not have to be
- Example: the traveling salesman problem
 - **Given** a number of cities, distances between the cities
 - **Find** an order in which to visit the cities such that the total distance traveled is minimized

Evolutionary Algorithms

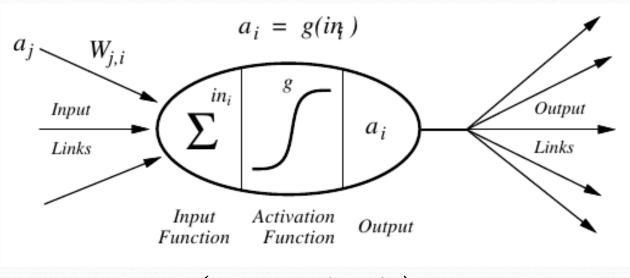
 Method: evolve populations of solutions by mimicking evolution in nature

Nature-inspired optimization


- Evolutionary algorithms
- Particle swarm optimization
- Artificial ants

All are
robust optimization algorithms:
if the fitness function changes, solutions usually adapt
relatively easily

• Research challenge: which algorithm finds a good solution as quickly as possible?


Learning: Neural Networks

Inspired by biological nervous systems

Learning: Neural Networks

Artificial neuron

(Neuron/Unit)

 Also a neural network represents knowledge, and is often used used to transform input to output

Learning: Neural Networks

- Different types of neural networks:
 - feed-forward neural networks
 - self-organizing maps
 - recurrent networks
 - radial basis function networks
 - fuzzy-neural networks

Research challenge: how to learn a neural network? What is a good architecture for a neural network?

Computational Intelligence

- Knowledge representation: fuzzy logic & fuzzy set theory
- You haven't followed a basic course on logic
- Reasoning, planning: Evolutionary (genetic) algorithms
- Learning: Neural networks

- Basis already discussed in course artificial intelligence
- Also in course on data mining
 - Advanced topics require strong mathematics

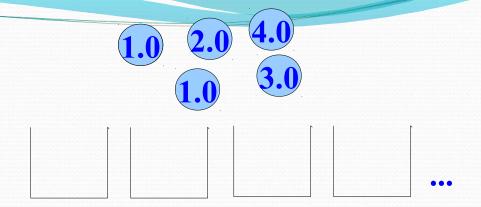
- Knowledge representation & planning:
- computational Intelligence
 - Knowledge representation: fuzzy logic & fuzzy set theory
 - Reasoning, planning: Evolutionary (genetic) algorithms
 - Learning: Neural networks

Central Theme


- Artificial intelligence inspired methods for
 - Knowledge representation:
 - Logic
 - Fuzzy logic
 - Optimization & planning:
 - SAT solving
 - Constraint programming
 - Local search
 - Evolutionary algorithms

Template of a Constraint Optimization Problem

- Given:
 - ...
- Find:
 - ...
- Such that:
 - ... is minimal/maximal
 - ... is satisfied


Example 1: **Traveling Salesmen**

- Given:
 - N cities
 - \bullet D[i,j] distances between cities
- Find:
 - an assignment p[i] for i=1..N with p[i] in 1..N, indicating that at step i city p[i] is visited
- Such that:
 - all cities are visited exactly once
 - D[p[1],p[2]]+D[p[2],p[3]]+...+D[p[n-1],p[n]]+D[p[n],p[1]]is minimal

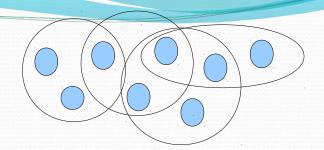
Example 2: Binpacking

- Given:
 - *N* items with sizes $a_{\nu},...,a_{N}$
 - A bin size *V*
- Find:
 - an assignment p[i] for i=1..N to positive integers, indicating that item i is put in bin p[i]
- Such that:
 - $\max_i p[i]$ is **minimal** (number of bins is small)
 - $\sum_{p[i]=i} a_i \le V$ for all bins j (no more than weight V in each bin)

Each bin: 4.0

Example 3: Knapsack

- Given:
 - *N* items with sizes a_{ν} ..., a_{N} , prices p_{ν} ..., p_{N}
 - A maximum weight *W*
- Find:
 - a subset of items *I*
- Such that:
 - $\sum_{i \in I} p_i$ is **maximal** (very valuable knapsack)
 - $\sum_{i \in I} a_i \leq W$ (knapsack with low weight)

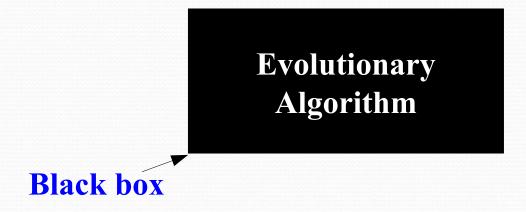


Example 3b: Unbounded Knapsack

- Given:
 - *N* possible items with sizes $a_{\nu},...,a_{N}$, prices $p_{\nu},...,p_{N}$
 - A weight W
- Find:
 - an integer *w[i]* for each item *i*
- Such that:
 - $\sum_{i=1}^{N} w[i]p_i$ is **maximal** (very valuable knapsack)
 - $\sum_{i=1}^{\infty} w[i]a_i \leq W$ (knapsack with low weight)

Portfolio Optimization

Example 4: Set Cover

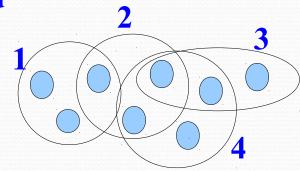

- Given:
 - *N* sets, each a subset of the universe $U=\{1,2,...,m\}$
- Find:
 - A subset *S* of the *N* given sets, i.e. each set in *S* equals one of the given sets, but not all given sets need to be selected.
- Such that:
 - |*S*| is **minimal** (small subset)
 - $\bigcup_{S \in \mathbf{S}} S = U$ (each element is covered)

How to solve these problems?

- Many such problems are hard
 - "NP hard" → no polynomial algorithm is known
- Two solutions:
 - Exact: require exponential time in the worst case
 - Inexact: polynomial, but may not find the best solutions
- Both types of solutions have been studied in artificial intelligence, algorithms, and operations research

- Distinguishing feature of AI approaches: they aim to be "intelligent" and generic by solving problems (semi-)automatically
- Idea: solve a problem in two stages:
 - 1. Describe the problem in a concise way in a computer language.
 - 2. Run a general algorithm (a "solver" or an "inference engine") on this description to solve the problem.
 - i.e., the programmer does **not** write an imperative algorithm.

- Example search: evolutionary algorithm
 - Step 1:
 - Specify what the individuals in a population look like
 - Specify the quality of an individual (fitness)
 - Step 2: (Ideal situation)
 - Run an existing evolutionary algorithm without modification


- Example problem: set cover
- Representation of an individual in a bitstring:

- Fitness: (assuming small=very fit)
 - Number of sets selected?
 - Number of sets selected +

 (number of uncovered elements) x w

Very large weight

- What about optimal solutions?
- Alternative *general* systems that take a *declarative* input specification and find optimal solutions:
 - Constraint programming
 - SAT solvers
 - ILP solver

• Which programming language to use?

- C++?
- Java?
- Prolog?
- Python

Why Python?

- Scripting language with a high level of abstraction
 - Implements features also seen in functional and logic programming
- Well-supported language with many libraries available
- Quickly gaining popularity in the scientific community (Coursera)

Why Python?

	2011	2012		2011	2012
R	45.1%	52.5%	Unix shell	10.4%	14.7%
Python	24.6%	36.1%	C/C++	12.8%	14.3%
SQL	32.3%	32.1%	MATLAB	14.6%	13.1%
Java	24.4%	24.1%	Perl	7.9%	9.0%
SAS	21.2%	19.7%	Hadoop-based	6.1%	6.7%

Computational Intelligence

- Basic course in Python
- Knowledge representation & planning: traditional logic, SAT solvers, constraint programming
- Knowledge representation: fuzzy logic & fuzzy set theory
- Reasoning, planning: Evolutionary (genetic) algorithms
- Learning: Neural networks

Course overview

- Essentially, the class will consist both of lectures & practicums
- 14 lectures, 11 practicum sessions planned
- However, lectures & practicums will often be combined
- 1 week will be canceled (which one will be announced later)

week	Date	Monday Tu					Tuesday					Wednesday				Thursday					Friday			
nr	Мо	1 2	3 4	5 6	7 8	1 2	3 4	5	6	78	1 2	3 4	5 6	7 8	1 2	3 4	5 6	7	8	1 2	3 4	5 6	7 8	
36	2 Sep			opening	Ac. Year					CI			CI	pr CI		HCI						inaug.	Stud. ver.	
37	9 Sep		HCI	DaMi						CI			CI	pr CI		HCI								
38	16 Sep		HCI	DaMi						CI			CI	pr CI		HCI								
39	23 Sep		HCI	DaMi												HCI								
40	30 Sep		HCI	DaMi									CI	pr CI		Relief	of Leide	n			Relief	of Leide	n	
41	7 Oct		HCI	DaMi									CI	pr CI		HCI								
42	14 Oct		HCI	DaMi									CI	pr CI		HCI								
43	21 Oct		HCI	DaMi									CI	pr CI		HCI								
44	28 Oct		HCI	DaMi		Fin pr	Fin					Fin		I/pr CI		HCI					Fin			
45	4 Nov		HCI	DaMi	t Fir	Fin pr	Fin					Fin		I/pr CI		HCI					Fin			
46	11 Nov		HCI	DaMi	t Fir	Fin pr	Fin					Fin		I/pr CI		HCI					Fin			
47	18 Nov		HCI	DaMi	t Fir	Fin pr	Fin		Ba	ch		Fin	С	I/pr CI		HCI					Fin			
48	25 Nov		HCI	DaMi	t Fir	Fin pr	Fin			Clevering	a	Fin				HCI					Fin			
49	2 Dec		HCI	DaMi	t Fir	Fin pr	Fin		Ba	ch		Fin				HCI					Fin			
50	9 Dec		HCI	DaMi	t Fir	Fin pr	Fin		Ba	ch		Fin									Fin			
51	16 Dec								ΓFin													TH		
52	23 Dec									Christma				Christma					Christma					
1	30 Dec	Christmas Holidays			Christmas Holidays				Christmas Holidays			Christmas Holidays				Christmas Holidays								
2	6 Jan			T Dal	Mi						p	CI									T CI			
3	13 Jan												Bach											
4	20 Jan																							
5	27 Jan												Bach											

 Final mark obtained 70% from a written exam and 30% from practicum assignments